Product Description
SDSX Grooved Flexible Coupling
Systems & Performance
SDSX Grooved mechanical couplings(GMC) are available in both rigid and flexible models.
Flexible couplings are designed to accommodate axial displacement, rotation and a minimum 1 degree of angular movement.
Flexible couplings are used in applications
that call for curved or deflected layouts or when
systems are exposed to outside forces beyond
normal static conditions.such as seismic events or where vibration or noise attenuation are a concern.
Description
SDSX Flexible coupling is designed from 1″-12″, and pressure is 300psi/2070 kPa.
Bolts/Nuts: Heat-treated plated carbon steel, meeting its mechanical properties Grade 8.8.
Gaskets: EPDM, silicon rubber and Nitrile rubber.
Dimensions
Nominal Size mm/in |
Pipe O.D mm/in |
Working Pressure PSI/MPa |
Bolt Size | Dimensions mm/in | ||
No.-Size mm | Ø | L | H | |||
25 1 |
33.7 1.327 |
300 2.07 |
2-3/8*45 | 60 2.362 |
102 4.016 |
45 1.772 |
32 1¼ |
42.4 1.669 |
300 2.07 |
2-3/8*45 | 70 2.756 |
106 4.173 |
44 1.732 |
40 1½ |
48.3 1.900 |
300 2.07 |
2-3/8*45 | 73 2.874 |
108 4.252 |
44 1.732 |
50 2 |
57.0 2.245 |
300 2.07 |
2-3/8*55 | 83 3.268 |
122 4.803 |
45 1.772 |
50 2 |
60.3 2.375 |
300 2.07 |
2-3/8*55 | 87 3.425 |
123 4.843 |
44 1.732 |
65 2½ |
73.0 2.875 |
300 2.07 |
2-3/8*55 | 100 3.937 |
138 5.433 |
44 1.732 |
65 2½ |
76.1 3.000 |
300 2.07 |
2-3/8*55 | 103 4.055 |
142 5.591 |
45 1.772 |
80 3 |
88.9 3.500 |
300 2.07 |
2- 1/2*60 | 117 4.606 |
166 6.535 |
45 1.772 |
100 4 |
108.0 4.250 |
300 2.07 |
2- 1/2*65 | 137 5.393 |
188 7.401 |
48 1.889 |
100 4 |
114.3 4.500 |
300 2.07 |
2- 1/2*65 | 139 5.472 |
190 7.480 |
49 1.929 |
125 5 |
133.0 5.250 |
300 2.07 |
2- 1/2*75 | 163 6.417 |
210 8.268 |
49 1.929 |
125 5 |
139.7 5.500 |
300 2.07 |
2- 1/2*75 | 168 6.614 |
218 8.583 |
49 1.929 |
150 6 |
159.0 6.250 |
300 2.07 |
2- 1/2*75 | 192 7.559 |
242 9.528 |
49 1.929 |
150 6 |
165.1 6.500 |
300 2.07 |
2- 1/2*75 | 193 7.598 |
241 9.488 |
49 1.929 |
150 6 |
168.3 6.625 |
300 2.07 |
2- 1/2*75 | 198.5 7.815 |
249 9.803 |
50 1.969 |
200 8 |
219.1 8.625 |
300 2.07 |
2-5/8*85 | 253 9.961 |
320 12.598 |
59 2.323 |
250 10 |
273 10.748 |
300 2.07 |
2-7/8*130 | 335 13.189 |
426 16.772 |
68 2.677 |
300 12 |
323.9 12.752 |
300 2.07 |
2-7/8*130 | 380 14.96 |
470 18.504 |
65 2.559 |
Material Specification
Housing: Ductile iron conforming to ASTM A-536, grade 65-45-12.
Housing Coating: Paint red and orange
• Optional: Hot dipped galvanized, electro galvanized.
Gaskets
• EPDM: Temperature range -34ºC to +150ºC. Recommended for hot water service within
the specified temperature range plus a variety of dilute acids,oil-free air and many chemical services.
NOT RECOMMENDED FOR PETROLEUM SERVICES.
• Silicon Rubber: Temperature range -40ºC to +177ºC. Recommended for drinking water,
hot water, high-temperature air and some high-temperature chemicals.
NOT RECOMMENDED FOR PETROLEUM SERVICES.
• Nitrile Rubber: Temperature range -29ºC to +82ºC. Recommended for petroleum products,
air with oil vapors, vegetable and mineral oils within the specified temperature range.
NOT RECOMMENDED FOR HOT WATER
SERVICES OVER +150°F/+66ºC OR FOR HOT
DRY AIR OVER +140°F/+60ºC.
Installation
Certification
Showroom
Application
Package and shipment
Production and quality control
Impact of Oil Chamber Design and Flow Dynamics on Oil Coupling Performance
The design of the oil chamber and flow dynamics significantly influence the performance of an oil coupling:
- Oil Distribution: Proper design ensures uniform oil distribution across the coupling components, ensuring effective lubrication and heat dissipation.
- Chamber Geometry: The chamber’s shape, size, and orientation impact oil flow patterns, turbulence, and cooling efficiency.
- Flow Control: Control mechanisms like baffles or partitions can regulate oil flow, enhancing heat transfer and reducing pressure variations.
- Oil Viscosity: The design considers the oil’s viscosity to ensure it flows optimally through the coupling, even at varying speeds and temperatures.
- Cooling: Efficient flow dynamics aid in cooling the coupling components, maintaining oil stability and preventing overheating.
- Oil Containment: A well-designed chamber prevents oil leakage, contamination, and ensures proper oil level maintenance.
Optimal oil chamber design and flow dynamics enhance oil coupling performance, promoting efficient power transmission, cooling, and longevity.
Types of Oils or Lubricants Used in Oil Couplings
Oil couplings typically use various types of oils or lubricants to facilitate power transmission and reduce friction between moving parts. The choice of oil depends on factors such as application, operating conditions, and temperature range. Some common types of oils used in oil couplings include:
- Mineral Oils: These are traditional petroleum-based oils with good lubricating properties and stability under moderate temperature and load conditions.
- Synthetic Oils: Synthetic oils are engineered lubricants with superior temperature stability, oxidation resistance, and reduced friction. They are often used in high-temperature or extreme conditions.
- Biodegradable Oils: In environmentally sensitive applications, biodegradable oils are chosen for their eco-friendly properties and biodegradability.
- High-Viscosity Oils: For heavy-duty applications or situations requiring high torque transmission, oils with higher viscosity are preferred to ensure proper lubrication and load-bearing capacity.
- Specialty Oils: Certain applications may require specialty oils, such as fire-resistant oils for safety or food-grade oils for industries like food and beverage.
The selection of the appropriate oil or lubricant is critical to ensure efficient power transmission, heat dissipation, and overall coupling performance. Manufacturers and users should consult the coupling’s specifications and operating conditions to determine the most suitable oil type.
Primary Functions and Benefits of Oil Couplings
An oil coupling, also known as a hydrodynamic coupling or fluid coupling, serves several important functions and offers a range of benefits in mechanical systems:
- 1. Torque Transmission: Oil couplings transmit torque from one shaft to another, allowing for power transfer between rotating components.
- 2. Smooth Start-Up: They enable smooth and controlled startup by allowing gradual engagement of the connected components, reducing shock loads and wear.
- 3. Overload Protection: Oil couplings act as overload protectors by allowing slip when excessive torque is applied, preventing damage to the machinery.
- 4. Shock Load Absorption: They absorb shock loads and vibrations, protecting equipment and reducing the risk of mechanical failures.
- 5. Torque Multiplication: Oil couplings can provide torque multiplication during startup, helping heavy machinery overcome inertia without straining the power source.
- 6. Variable Speed Transmission: They allow for variable speed operation by adjusting the amount of fluid in the coupling, providing flexibility in controlling the output speed.
- 7. Energy Efficiency: Oil couplings improve energy efficiency by allowing gradual acceleration and reducing the need for sudden power bursts.
- 8. Reduction of Wear and Tear: By preventing abrupt load changes and reducing stress on components, they contribute to the longevity of machinery.
- 9. Simplified Mechanical Design: Oil couplings can eliminate the need for complex mechanical clutches and torque converters in certain applications.
These functions and benefits make oil couplings valuable components in various industries, where they contribute to the efficiency, reliability, and overall performance of machinery and equipment.
editor by CX 2023-08-29